Q.
If a variable st. line xcosα+ysinα=p which is chord of the hyperbola a2x2−b2y2=1(b>a) subtend a right angle at the centre of hyperbola, then it always touches a fixed circle whose radius is equal to
If xcosα+ysinα=pmeets the hyperbola a2x2−b2y2=1at the points A,B, then join equation of OA,OB (where 0 is the centre of the hyperbola) is given by a2x2−b2y2=(pxcosα+ysinα)2
i.e., a2x2−b2y2−p2x2cos2α−p2y2sin2α−p22xypcosαsinα=0
Since the chord subtends a right angle at the centre ∴a21−p2cos2α−b21−p2sin2α=0 ⇒a21−b21=p21 ⇒p=b2−a2ab
Now, xcosα+ysinα=p touches x2+y2=r2
if length of the ⊥ from (0,0) upon the line = Radius
i.e., if cos2α+sin2αp=r i.e.,
p=r
Hence line touches a fixed circle with radius b2−a2ab