Q.
If a variable line drawn through the intersection of the lines 3x+4y=1 and 4x+3y=1, meets the coordinate axes at A and B, (A=B), then the locus of the midpoint of AB is :
L1:4x+3y−12=0 L2:3x+4y−12=0 L1+λL2=0 (4x+3y−12)+λ(3x+4y−12)=0 x(4+3λ−12)+y(3+4λ)−12(1+λ)=0
Point A(4+3λ12(1+λ),0)
Point B(0,3+4λ12(1+λ))
mid point ⇒h=4+3λ6(1+λ)......(i) k=3+4λ6(1+λ)......(ii)
Eliminate λ from (i) and (ii) then 6(h+k)=>hk 6(x+y)=>xy