Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a random variable X has the probability distribution given by P(X = 0) = 3C3, P(X = 2 ) = 5C - 10C2 and P(X = 4) = 4C - 1, then the variance of that distribution is
Q. If a random variable
X
has the probability distribution given by
P
(
X
=
0
)
=
3
C
3
,
P
(
X
=
2
)
=
5
C
−
10
C
2
and
P
(
X
=
4
)
=
4
C
−
1
, then the variance of that distribution is
5404
224
AP EAMCET
AP EAMCET 2019
Report Error
A
9
68
0%
B
9
22
0%
C
81
612
100%
D
81
128
0%
Solution:
Given,
P
(
X
=
0
)
=
3
C
3
P
(
X
=
2
)
=
5
C
−
10
C
2
and
P
(
X
=
4
)
=
4
C
−
1
We know that,
∑
P
(
X
)
=
1
⇒
3
C
3
+
(
5
C
−
10
C
2
)
+
(
4
C
−
1
)
=
1
⇒
3
C
3
−
10
C
2
+
9
C
−
2
=
0
⇒
(
C
−
1
)
(
3
C
2
−
7
C
+
2
)
=
0
⇒
(
C
−
1
)
(
3
C
−
1
)
(
C
−
2
)
=
0
⇒
C
=
1
,
3
1
,
2
∴
C
=
3
1
Now,
Hence, variance
=
Σ
X
P
2
−
(
Σ
X
P
)
2
=
(
0
2
×
9
1
+
4
×
9
5
+
16
×
3
1
)
−
(
9
10
+
3
4
)
2
=
(
9
20
+
3
16
)
−
(
27
66
)
2
=
27
60
+
144
−
81
484
=
27
204
−
81
484
=
81
612
−
484
=
81
128