Q.
If a random variable X follows the Binomial distribution B(33, p) such that 3P(X=0)=P(X=1), then the value of P(X=18)P(X=15)−P(X=17)P(X=16) is equal to
n=33, let probability of success is p and q=1−p 3p(x=0)=p(x=1) 3.33C0(q)33=33C1pq32 p=121,q=1211,pq=11 p(x=18)p(x=15)−p(x=17)p(x=16) 33C18p18q1533C15p15q18−33C17p17q1633C16p16q17=(pq)3−(pq) =(11)3−11 =1320