Let P be a point on the hypotenuse AC of right angled △ABC.
Such that PL⊥AB=a and PM⊥BC=b
Hence PL=a PM=b
Clearly, ∠APL=∠ACB=θ (say) AP=asecθ,PC=bcosecθ
Let l be the length of the hypotenuse, then l=AP+PC ⇒l=asecθ+bcosecθ,0<θ<2π
On ditterentiating w.r.t. θ, we get dθdl=asecθtanθ−bcosecθcotθ
For maxima or minima put dθdl=0 ⇒asecθtanθ=bcosecθcotθ ⇒cos2θasinθ=sin2θbcosθ ⇒cos3θsin3θ=ab ⇒tan3θ=ab ⇒tanθ=(ab)1/3
Now, dθ2d2l=a(secθ×sec2θ+tanθ×secθtanθ] =acosecθ(−cosec2θ)+cotθ(−cosec2θcot2θ)] =a(secθ+tan2θ)+bcosecθ(cosec2θ+cot2θ)
Since, 0<θ<2π, so trigonometric ratios are positive.
Also, a>0 and b>0. ∴dθ2d2I is positive. ⇒l is least when tanθ=(ab)1/3
Now, we have the following figure ∴ Least value of I=asecθ+bcosecθ =aa1/3a2/3+b2/3+bb1/3a2/3+b2/3 =a2/3+b2/3(a2/3+b2/3)=(a2/3+b2/3)3/2 [∵ in ΔEFG,secθ=a1/3a2/3+b2/3 and cosecθ=b1/3a2/3+b2/3]