Q.
If a plane pasees through the pointe (−1,k,0),(2,k,−1),(1,1,2) and is parallel to the line 1x−1=22y+1=−1z+1, then the value of (k−1)(k−2)k2+1 is
1x−1=22y+1=−1z+1 1x−1=1y+21=−1z+1 Points : A(−1,k,0),B(2,k,−1),C(1,1,2) CA=−2i^+(k−1)j^−2k^ CB=i^+(k−1)j^−3k^ CA×CB=∣∣i^−21j^k−1k−1k^−2−3∣∣ =i^(−3k+3+2k−2)−j^(6+2)+k^(−2k+2−k+1) =(1−k)i^−8j^+(3−3k)k^
The line 1x−1=1y+21=−1z+1 is perpendicular to normal vector. ∴1⋅(1−k)+1(−8)+(−1)(3−3k)=0 ⇒1−k−8−3+3k=0 ⇒2k=10⇒k=5 ∴(k−1)(k−2)k2+1=4⋅326=613