Parametric equations of given circle is x=12cosθ,y=12sinθ [∵. Parametric equation of x2+y2=r2 is x=rcosθ,y=rsinθ]
Now, coordinates of point A are given by x=12cos3π,y=12sin3π ⇒x=12⋅21,y=12⋅23 ⇒x=6;y=63
i.e. A≡(6,63)
and coordinates of point B are given by x=12cos6π,y=12sin6π ⇒x=12⋅23⋅y=12⋅21 ⇒x=63,y=6
i.e. B≡(63,6)
Clearly, length of chord AB=(63−6)2+(6−63)2 =2×62(3−1)2 =62(3−1) =6(6−2)