Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A = [p&q&r r&p&q q&r&p] and AAT = I then, p3 + q3 + r3 =
Q. If A =
⎣
⎡
p
r
q
q
p
r
r
q
p
⎦
⎤
and
A
A
T
=
I
then,
p
3
+
q
3
+
r
3
=
2753
199
AP EAMCET
AP EAMCET 2019
Report Error
A
±
1
0%
B
pq
r
0%
C
3
pq
r
0%
D
3
pq
r
±
1
100%
Solution:
Given,
A
A
T
=
I
It represents orthogonal matrix.
Determinant of orthogonal matrix is
±
1
.
∴
∣
A
∣
=
∣
∣
p
r
q
q
p
r
r
q
p
∣
∣
=
±
1
⇒
p
(
p
2
−
q
r
)
−
q
(
p
r
−
q
2
)
+
r
(
r
2
−
pq
)
=
±
1
⇒
p
3
−
pq
r
−
pq
r
+
q
3
+
r
3
−
pq
r
=
±
1
⇒
p
3
+
q
3
+
r
3
−
3
pq
r
=
±
1
⇒
p
3
+
q
3
+
r
3
=
3
pq
r
±
1