Given ∣∣paabqbccr∣∣=0 R1→R1−R2,R2→R2−R3 reduces the determinant to ∣∣p−a0ab−qq−bb0c−rr∣∣=0⇒(p−a)(q−b)r+a(b−q)(c−r)−b(p−a)(c−r)=0 ⇒ Dividing throughout by (p−a)(q−b)(r−c), we get r−cr+p−aa+q−bb=0 ⇒r−cr+1+p−aa+1+q−bb=2 ⇒r−cr+p−ap+q−bq=2