Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a ≠ 1 and ln a 2+( ln a 2)2+( ln a 2)3+ ldots ldots . .=3( ln a +( ln a )2+( ln a )3+( ln a )4+ ldots ldots ..) then 'a' is equal to
Q. If
a
=
1
and
ln
a
2
+
(
ln
a
2
)
2
+
(
ln
a
2
)
3
+
……
..
=
3
(
ln
a
+
(
ln
a
)
2
+
(
ln
a
)
3
+
(
ln
a
)
4
+
……
..
)
then 'a' is equal to
91
106
Sequences and Series
Report Error
A
e
1/5
B
e
C
3
e
D
4
e
Solution:
1
−
l
n
a
2
l
n
a
2
=
1
−
l
n
a
3
l
n
a
→
1
−
2
l
n
a
2
l
n
a
=
1
−
l
n
a
3
l
n
a
→
2
(
ln
a
)
−
2
(
ln
a
)
2
=
3
ln
a
−
6
(
ln
a
)
2
→
4
(
ln
a
)
2
−
ln
a
=
0
→
ln
a
=
0
or
4
1
. Thus,
a
=
1
,
e
1/4
]