Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a= min x2+4 x+5, x ∈ R and b= displaystyle lim θ arrow 0 (1- cos 2 θ/θ2), then the value of displaystyle∑r=0n ar ⋅ bn-r is
Q. If
a
=
min
{
x
2
+
4
x
+
5
,
x
∈
R
}
and
b
=
θ
→
0
lim
​
θ
2
1
−
cos
2
θ
​
, then the value of
r
=
0
∑
n
​
a
r
â‹…
b
n
−
r
is
1551
221
Limits and Derivatives
Report Error
A
4
â‹…
2
n
2
n
+
1
−
1
​
B
2
n
+
1
−
1
C
3
â‹…
2
n
2
n
+
1
−
1
​
D
None of these
Solution:
x
2
+
4
x
+
5
=
(
x
+
2
)
2
+
1
≥
1.
 So,Â
a
=
1
Also,
b
=
θ
→
0
lim
​
θ
2
1
−
cos
2
θ
​
=
θ
→
0
lim
​
θ
2
2
sin
2
θ
​
=
2
∴
r
=
0
∑
n
​
a
r
â‹…
b
n
−
r
=
b
n
+
a
b
n
−
1
+
a
2
b
n
−
2
+
…
+
a
n
=
1
−
b
a
​
b
n
[
1
−
(
b
a
​
)
n
+
1
]
​
=
1
−
2
1
​
2
n
[
1
−
(
2
1
​
)
n
+
1
]
​
=
2
n
+
1
2
n
+
1
(
2
n
+
1
−
1
)
​
=
(
2
n
+
1
−
1
)