Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a line y = 3x + 1 cuts the parabola x2 - 4x - 4y + 20 = 0 at A and B, then the tangent of the angle subtended by line segment AB at the origin is
Q. If a line
y
=
3
x
+
1
cuts the parabola
x
2
−
4
x
−
4
y
+
20
=
0
at
A
and
B
, then the tangent of the angle subtended by line segment
A
B
at the origin is
2280
204
Conic Sections
Report Error
A
8
3
/205
B
8
3
/209
C
8
3
/215
D
none of these
Solution:
The joint equation of
O
A
and
OB
is
x
2
−
4
x
(
y
−
3
x
)
−
4
y
(
y
−
3
x
)
+
20
(
y
−
3
x
)
2
=
0
Making the equation of the parabola homogeneous using straight line, we get
x
2
(
1
+
12
+
180
)
−
y
2
(
4
−
20
)
−
x
y
(
4
−
12
+
120
)
=
0
or
193
x
2
+
16
y
2
−
112
x
y
=
0
t
an
θ
=
a
+
b
2
h
2
−
ab
=
193
+
16
2
5
6
2
−
193
×
16
=
209
8
3