Q.
If a line passing through (−2,1,α) and (4,1,2) is perpendicular to the vector 3i^−4j^+5k^ and parallel to the plane containing vectors i^+2βk^ and 2βj^+αk^(∀β=0) , then 10(α+β) is equal to
1387
218
NTA AbhyasNTA Abhyas 2020Vector Algebra
Report Error
Solution:
Let, coordinates of A,B are respectively (−2,1,α),(4,1,2) respectively AB→=6i^+(2−α)k^ ∵AB→ is perpendicular to 3i^−4j^+5k^ ⇒18+5(2−α)=0⇒α=528
Also, AB→,i^+2βk^,2βj^+αk^ are coplanar ⇒∣∣610002β2−α2βα∣∣=0 ⇒2β(12β+α−2)=0⇒β=0 or 12β=2−α 12β=2−528 12β=−518⇒β=−103