AK=2K(K−1)cos2K(K−1)π,K=1,2,....,105
Now A1=0,A2= cos π=−A3=3 cos 3π=−3 ∴A2+A3=−22
Similarly, A4+A5=6 cos 6π+10 cos 10π=16=42
and A6+A7=15 cos 15π+21 cos 21π=−36=−62 ∴A104+A105=5356 cos (5356π)+5460 cos (5460π)=10816=(104)2 ∴S=K=1∑105AK=A1+(A2+A3)+(A4+A5)+....+A104+A105 S=−22+42−62+.....−(102)2+(104)2 =−4(12−22+32−42+....+512−522) =4(1+2+3+....+52) =24×52×53=5512 ∴ Prime factors of S=23×131×531So, number of divisors of S =4×2×2=16
Sum of the digits of S=5+5+1+2=13 which is one of the divisor of 5 and sum of all divisors =2−124−1×13−1132−1×53−1532−1=15×14×54=11340