Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If AK = (K(K -1)/2) cos (K(K -1)/2) π and ∑ limits105K =1 AK =S then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $A_{K} = \frac{K\left(K -1\right)}{2}$ cos $\frac{K\left(K -1\right)}{2} \pi$ and $\sum\limits^{105}_{K =1} A_{K} =S$ then
Sequences and Series
A
number of divisors of $S$ are $12$
B
Sum of digits of $S$ is one of the divisor of $S$
C
The number of divisors of $S$ are $16$
D
Sum of divisors of $S = 11340$
Solution:
$A_{K} = \frac{K\left(K -1\right)}{2} cos \frac{K\left(K -1\right)}{2} \pi, K =1, 2,....,105$
Now $A_{1} = 0, A_{2} =$ cos $\pi = -A_{3} =3$ cos $3\pi = -3$
$\therefore A_{2} +A_{3} = -2^{2}$
Similarly, $A_{4} +A_{5} =6$ cos $6\pi + 10$ cos $10\pi = 16 = 4^{2}$
and $A_{6}+A_{7} = 15$ cos $15\pi + 21$ cos $21\pi = - 36 = - 6^{2}$
$\therefore A_{104} + A_{105} = 5356$ cos $\left(5356\pi\right) + 5460$ cos $\left(5460\pi\right) = 10816 =\left(104\right)^{2}$
$\therefore S =\sum\limits^{105}_{K = 1}A_{K} = A_{1} +\left(A_{2} + A_{3}\right) +\left(A_{4} +A_{5}\right) +....+A_{104} +A_{105}$
$S = -2^{2} +4^{2} -6^{2} + .....-\left(102\right)^{2} +\left(104\right)^{2}$
$= -4\left(1^{2} -2^{2} + 3^{2}-4^{2} +....+ 51^{2} -52^{2}\right)$
$= 4\left(1 + 2 + 3 +....+ 52\right)$
$= \frac{4 \times 52 \times53}{2} = 5512$
$\therefore $ Prime factors of $S = 2^{3} \times 13^{1} \times 53^{1}$So, number of divisors of $S$
$= 4 \times 2 \times 2 = 16$
Sum of the digits of $S = 5 + 5 + 1 + 2 = 13$ which is one of the divisor of 5 and sum of all divisors
$= \frac{2^{4} -1}{2 -1} \times\frac{13^{2} -1}{13 -1} \times \frac{53^{2} -1}{53 -1} = 15 \times14 \times54=11340$