Q.
If A is a non-zero square matrix of order n with det (I+A)=0 and A3=O, where I,O are unit and null matrices of order n×n respectively, then (I+A)−1 is equal to
Given, ∣I+A∣=O
e, (A+I) is a non-singular matrix. O→ Null Matrix I→ Unit Matrix ∵I3=I ⇒A3=O ⇒A3+I=O+I ⇒A3+I3=O+I ⇒(A+I)(A2−A+I)=(O+I) (A+I)(A2−A+I)=I∵(O+I=I)
Operate (A+I)−1 on both sides {(A+I)−1(A+I)}(A2−A+I) =(A+I)−1⋅I ⇒I⋅(A2−A+I)=(A+I)−1 (∵I⋅(A+I)−1=(A+I)−1) (A+I)−1=(A2−A+I)
or (I+A)−1=(I−A+A2)