Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A is a matrix [ 1 -1 0 0 2 a 1 1 2 ] , then the number of real value (.s.) of 'a' for which A(.adjA.)=adj(.adjA.), is (where adjA denotes adjoint of matrix A )
Q. If
A
is a matrix
⎣
⎡
1
0
1
−
1
2
1
0
a
2
⎦
⎤
, then the number of real value
(
s
)
of
′
a
′
for which
A
(
a
d
j
A
)
=
a
d
j
(
a
d
j
A
)
,
is (where
a
d
j
A
denotes adjoint of matrix
A
)
818
176
NTA Abhyas
NTA Abhyas 2022
Report Error
A
0
B
1
C
2
D
3
Solution:
∣
A
∣
=
4
−
a
+
1
(
−
a
)
=
4
−
2
a
A
(
A
d
j
A
)
=
∣
A
∣
I
=
(
4
−
2
a
)
I
A
d
j
(
A
d
j
A
)
=
∣
A
∣
A
=
(
4
−
2
a
)
A
(
4
−
2
a
)
I
=
(
4
−
2
a
)
A
⇒
(
4
−
2
a
)
(
A
−
I
)
=
0
⇒
a
=
2