Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A=∫ limits1 sin θ (t/1+t2) d t, B=∫ limits1 operatornamecosec θ (1/t(1+t2)) d t, then |A A2 B eA+B B2 -1 1 A2+B2 -1| equals
Q. If
A
=
1
∫
s
i
n
θ
1
+
t
2
t
d
t
,
B
=
1
∫
cosec
θ
t
(
1
+
t
2
)
1
d
t
, then
∣
∣
A
e
A
+
B
1
A
2
B
2
A
2
+
B
2
B
−
1
−
1
∣
∣
equals
31
48
Integrals
Report Error
A
sin
θ
B
cosec
θ
C
0
D
1
Solution:
B
=
1
∫
cosec
θ
t
(
1
+
t
2
)
1
d
t
Let
t
1
=
u
⇒
B
=
1
∫
s
i
n
θ
1
+
u
2
−
u
d
u
⇒
A
+
B
=
0
⇒
A
=
−
B
∴
∣
∣
A
e
A
+
B
1
A
2
B
2
A
2
+
B
2
B
−
1
−
1
∣
∣
=
0