Q.
If a∈R and the equation −3(x—[x])2+2(x−[x])+a2=0 (where [x] denotes the greatest integer ≤x) has no integral solution, then all possible values of a lie in the interval :
−3(x−[x])2+2[x−[x])+a2=0 3{x}2−2{x}−a2=0 a=0,3({x}2−32{x})=a2 a2=3({x}−31)2−31 0≤{x}<1 \and 3−31≤{x}−31<32 0≤3({x}−31)2<34 −31≤3({x}−31)2−31<1
For non-integral solution 0<a2<1 and a∈(−1,0)∪(0,1) Alternative −3{x}2+2{x}+a2=0
Now, −3{x}2+2{x}
to have no integral roots 0<a2<1 ∴a∈(−1,0)∪(0,1)