The graph of y=16x2+8(a+5)x−7a−5 is strictly above the x -axis ⇒y>0∀x∈R ⇒16x2+8(a+5)x−7a−5>0∀x∈R
The above inequality holds if discriminant <0 [∵ coefficient of x2>0 ] ⇒64(a+5)2−4.16(−7a−5)<0 ⇒a2+17a+30<0 ⇒(a+2)(a+15)<0 ⇒−15<a<−2
Given −20≤a≤0 and favourable cases −15<a<−2 ∴ Required probability = length of interval (−20,0) length of interval (−15,−2)=0−(−20)−2−(−15)=2013