(i) As f(x)=y=x2+2(a+3)x−2a−6>0 ∀x∈R
(ii) f(x)>0, coefficient of x2 is 1>0
(iii) D<0 ∴4(a+3)2−4(−2a−6)<0 ⇒(a+3)2+2a+6<0 ⇒a2+8a+15<0 ⇒(a+3)(a+5)<0 ⇒−5<a<−3
Now, n(S)= length of interval, as n∈[−10,0] =0−(−10)=10 ∴n(S)=10 n(A)= length of interval, when −5<a<−3 =−3−(−5)=2 ∴ Required probability =n(S)n(A) =102=51 Alternative Solution :
As f(x)=y>0 ,br>
⇒a>0 and D<0 ⇒a2+8a+15<0 ⇒−5<a<−3 (To be use for n(A)) ∴ Required probability =n(S)n(A) =−10∫0dx−5∫−3dx=102=51