Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a ∈ [-10, 0], then the probability that the graph of the function y = x2 + 2(a + 3) x - (2a + 6 ) is strictly above x -axis, is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $a \in [-10, 0]$, then the probability that the graph of the function $y = x^2 + 2(a + 3) x - (2a + 6 )$ is strictly above $x$ -axis, is
Probability - Part 2
A
$\frac{3}{5}$
B
$\frac{2}{5}$
C
$\frac{1}{5}$
D
None of these
Solution:
(i) As $f(x) = y = x^2 + 2(a + 3) x - 2a - 6 > 0 $
$\,\forall \, x \in R$
(ii) $f(x) > 0$, coefficient of $x^2$ is $1 > 0$
(iii) $D < 0$
$\therefore 4(a + 3)^2 - 4(- 2a - 6) < 0$
$\Rightarrow (a + 3)^2 + 2a + 6 < 0$
$\Rightarrow a^2 + 8a + 15 < 0$
$\Rightarrow (a + 3) (a + 5) < 0$
$\Rightarrow - 5 < a < -3$
Now, $n(S) =$ length of interval, as $n \in [-10, 0]$
$= 0 - (- 10) = 10$
$\therefore n(S) = 10$
$n(A) =$ length of interval, when $- 5 < a < - 3$
$= - 3 - (- 5) = 2$
$\therefore $ Required probability $ = \frac{n(A)}{n(S)} $
$= \frac{2}{10} = \frac{1}{5}$
Alternative Solution :
As $f(x) = y > 0$ ,br> $\Rightarrow a > 0$ and $D < 0$
$\Rightarrow a^2 + 8a + 15 < 0$
$\Rightarrow -5 < a < -3$ (To be use for $n(A))$
$\therefore $ Required probability $ = \frac{n(A)}{n(S)}$
$ = \frac{\int\limits_{-5}^{-3} dx}{\int\limits_{-10}^{0} dx} = \frac{2}{10} = \frac{1}{5}$