Q.
If a=i^+j^−k^,b=i^−j^+k^, and c is a unit vector perpendicular to the vector a and coplanar with a and b , then a unit vector d perpendicular, to both a and c is
Let c=xa+yb =x(i^+j^−k^)+y(i^−j^+k^) =(x+y)i^+(x−y)j^−(x−y)k^
Since c is perpendicular to a ∴x+y+x−y+x−y=0 ⇒3x=y
Since ∣c∣=1 ∴(x+y)2+(x−y)2+(x−y)2=1 ∴(4x)2+(−2x)2+(−2x)2=1 or 24x2=1 ∴x=261 ∴c=4xi^−2xj^+2xk^ =62i^−61j^+61k^
i.e., c=61(2i^−j^+k^)
Let d=d1i^+d2j^+d3k^
Since d is ⊥ to a a and c ∴a⋅a=0 ⇒d1+d2−d3=0
and d⋅c=0 ⇒2d1−d2+d3=0 ⇒3d1=0 ⇒d1=0 ∴d2=d3
Since ∣∣d∣∣=1 ∴d12+d22+d32=1 ∴d2=d3=21.
Hence d=21(j^+k^)