Let d=d1i^+d2j^+d3k^ a⋅d=(i^−j^)⋅(d1i^+d2j^+d3k^) ⇒d1−d2=0(∵a⋅d=0) ⇒d1=d2...(i)
Also, d is a unit vector. ⇒d12+d22+d32=1...(ii)
Also, [bcd]=0 ⇒∣∣0−1d110d2−11d3∣∣=0 ⇒−1(−d3−d1)−1(−d2)=0 ⇒d1+d2+d3=0 ⇒2d1+d3=0 [from Eq. (i)] ⇒d3=−2d1...(iii)
Using Eqs. (iii) and (i) in Eq. (ii), we get d12+d12+4d12=1⇒d1=±61 ∴d2=±61 and d3=∓62
Hence, required vector is ±61(i^+j^−2k^).