Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a function f( x )= ax 3+ bx 2+ cx + d where a , b , c and d are integers and a >0 is such that f( sin (π/18))=0. Then the smallest possible value of f(1) is
Q. If a function
f
(
x
)
=
a
x
3
+
b
x
2
+
c
x
+
d
where
a
,
b
,
c
and
d
are integers and
a
>
0
is such that
f
(
sin
18
π
)
=
0
. Then the smallest possible value of
f
(
1
)
is
182
97
Complex Numbers and Quadratic Equations
Report Error
A
1
B
2
C
3
D
4
Solution:
sin
18
π
=
sin
1
0
∘
,
sin
3
0
∘
=
2
1
also
sin
3
0
∘
=
3
sin
1
0
∘
−
4
sin
3
1
0
∘
2
1
=
3
sin
1
0
∘
−
4
sin
3
1
0
∘
8
sin
3
1
0
∘
+
0
sin
2
1
0
∘
−
6
sin
1
0
∘
+
1
=
0
.....(1)
f
(
sin
3
0
∘
)
=
0
sin
3
1
0
∘
+
b
sin
2
1
0
∘
+
c
sin
1
0
∘
+
d
=
0
....(2)
comparing
(
1
)
and
(
2
)
a
=
8
,
b
=
0
,
c
=
−
6
,
d
=
1
hence
f
(
1
)
=
a
+
b
+
c
+
d
f
(
1
)
=
3