Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a function F is such that f(0)=2, F(1)=3, F(n+2)=2F(n)-F(n+1) for n≠ 0, then F(5) is equal to
Q. If a function F is such that
f
(
0
)
=
2
,
F
(
1
)
=
3
,
F
(
n
+
2
)
=
2
F
(
n
)
−
F
(
n
+
1
)
for
n
=
0
,
then
F
(
5
)
is equal to
2010
207
J & K CET
J & K CET 2003
Report Error
A
−
7
B
−
3
C
7
D
13
Solution:
Given that,
F
(
0
)
=
2
,
F
(
1
)
=
3
,
F
(
n
+
2
)
=
2
F
(
n
)
−
F
(
n
+
1
)
At
n
=
0
,
F
(
0
+
2
)
=
2
F
(
0
)
−
F
(
1
)
⇒
F
(
3
)
=
2
(
2
)
−
3
=
1
At
n
=
1
,
F
(
1
+
2
)
=
2
F
(
1
)
−
F
(
2
)
⇒
F
(
3
)
=
2
(
3
)
−
1
=
5
At
n
=
2
,
F
(
2
+
2
)
=
2
F
(
2
)
−
F
(
3
)
⇒
F
(
4
)
=
2
(
1
)
−
5
=
−
3
At
n
=
3
,
F
(
3
+
2
)
=
2
F
(
3
)
−
F
(
4
)
=
2
(
5
)
−
(
−
3
)
⇒
F
(
5
)
=
13