Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a = displaystyle lim n arrow ∞ ∑ k =1 n (2 n / n 2+ k 2) and f(x)=√(1- cos x/1+ cos x), x ∈(0,1), then :
Q. If
a
=
n
→
∞
lim
k
=
1
∑
n
n
2
+
k
2
2
n
and
f
(
x
)
=
1
+
c
o
s
x
1
−
c
o
s
x
,
x
∈
(
0
,
1
)
, then :
159
112
JEE Main
JEE Main 2022
Limits and Derivatives
Report Error
A
2
2
f
(
2
a
)
=
f
′
(
2
a
)
B
f
(
2
a
)
f
′
(
2
a
)
=
2
C
2
f
(
2
a
)
=
f
′
(
2
a
)
D
f
(
2
a
)
=
2
f
′
(
2
a
)
Solution:
a
=
n
1
k
=
1
∑
n
1
+
(
n
k
)
2
2
=
∫
0
1
1
+
x
2
2
d
x
=
2
π
f
(
x
)
=
tan
(
2
x
)
;
x
∈
(
0
,
1
)
f
(
4
π
)
=
2
−
1
f
′
(
4
π
)
=
2
1
sec
2
(
8
π
)
=
2
+
1
2
f
′
(
4
π
)
=
2
f
(
4
π
)