Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a curve y=f(x), passing through the point (1,2), is the solution of the differential equation. 2 x 2 dy =(2 xy + y 2) dx , then f ((1/2)) is equal to. So, f((1/2)) = (1/1 + loge 2)
Q. If a curve
y
=
f
(
x
)
, passing through the point
(
1
,
2
)
,
is the solution of the differential equation.
2
x
2
d
y
=
(
2
x
y
+
y
2
)
d
x
,
then
f
(
2
1
)
is equal to.
So,
f
(
2
1
)
=
1
+
l
o
g
e
2
1
1890
228
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
1
−
l
o
g
e
2
1
9%
B
1
+
l
o
g
e
2
1
54%
C
1
+
l
o
g
e
2
−
1
24%
D
1
+
lo
g
e
2
13%
Solution:
2
x
2
d
y
=
(
2
x
y
+
y
2
)
d
x
⇒
d
x
d
y
=
2
x
2
2
x
y
+
y
2
{
Homogeneous D.E.
}
{
l
e
t
y
=
x
t
⇒
d
t
d
y
=
t
+
x
d
x
d
t
}
⇒
t
+
x
d
x
d
t
=
2
x
2
2
x
2
t
+
x
2
t
2
⇒
t
+
x
d
x
d
t
=
t
+
2
t
2
⇒
x
d
x
d
t
=
2
t
2
⇒
2
∫
t
2
d
t
=
∫
x
d
x
⇒
2
(
−
t
1
)
=
ℓ
n
(
x
)
+
C
{
Put
t
=
x
y
}
⇒
−
y
2
x
=
ℓ
n
x
+
C
{
P
u
t
x
1
=
&
y
=
2
then we get
C
=
−
1
}
⇒
y
−
2
x
=
ℓ
n
(
x
)
−
1
⇒
y
=
1
−
ℓ
n
x
2
x
⇒
f
(
x
)
=
1
−
l
o
g
e
x
2
x
so,
f
(
2
1
)
=
1
+
l
o
g
e
2
1