Q.
If a curve is represented parametrically by the equations
x=sin(t+127π)+sin(t−12π)+sin(t+123π),y=cos(t+127π)+cos(t−12π)+cos(t+123π)
then find the value of dtd(yx−xy) at t=8π.
287
109
Continuity and Differentiability
Report Error
Answer: 8
Solution:
We have x=sin(t+127π)+sin(t−12π)+sin(t+123π)=2sin(t+4π)cos(3π)+sin(t+4π)=2sin(t+4π)
|||ly y=cos(t+127π)+cos(t−12π)+cos(t+123π)=2cos(t+4π)cos(3π)+cos(t+4π)=2cos(t+4π)
Now, yx=tan(t+4π)=1−tant1+tant and xy=tan(t+4π)1=1+tant1−tant ∴(yx−xy)=(1−tant1+tant)−(1+tant1−tant)=1−tan2t(1+tant)2−(1−tant)2=1−tan2t4tant=2tan2t
Hence dtd(yx−xy)=dtd(2tan2t)=4sec22t]t=8π=4sec24π=8