We have, x=acost+2bcos2t and y=asint+2bsin2t On-differentiating both
equations w.r.t.t, we get dtdx=−asint−bsin2t and dtdy=acost+bcos2t∴dxdy=dx/dtdy/dt=−asint−bsin2acost+bcos2t ⇒ dxdy=−(asint+bsin2t)(acost+bcos2t) Now, dx2d2y=dxd(dxdy)=dtd(dxdy) ⋅dxdt⇒ dx2d2y=−dxd(dxdy)=dtd(dxdy)⋅dxdt =[a2sin2t+3absintsin2t+2b2sin22t(asint+bsin2t)2][(asint+bsin2t)(−asint−2bsin2t)−(acost+bcos2t)(acost+2bcos2t)]×−asint−bsin2t1=a2(sin2t+cos2t)+b2(sin22t+cos22t)(a)dabcos2t+3abcostcos2t+2b2cos22t+3abcos(2t−t)=⇒a2+2b2+3abcost=0⇒cost(asint+bsin2t)3=−(dx2d2y=−[(asint+bsin2t)3a2+2b2+3abcost] Given, dx2d2y=0⇒a2)