Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A = [ cos θ sin θ - sin θ cos θ] then lim n arrow ∞ (1/n) An is
Q. If
A
=
[
cos
θ
−
sin
θ
sin
θ
cos
θ
]
then
lim
n
→
∞
n
1
A
n
is
2165
200
Matrices
Report Error
A
a null matrix
0%
B
an identity matrix
0%
C
[
0
−
1
1
0
]
100%
D
None of these
0%
Solution:
A
n
=
[
cos
n
θ
−
sin
n
θ
sin
n
θ
cos
n
θ
]
⇒
n
1
A
n
=
[
n
c
o
s
n
θ
−
n
s
i
n
n
θ
n
s
i
n
n
θ
n
c
o
s
n
θ
]
But
−
1
≤
cos
n
θ
≤
1
and
−
1
≤
sin
n
θ
≤
1
n
→
∞
lim
n
sin
n
θ
=
0
,
n
→
∞
lim
n
cos
n
θ
=
0
⇒
n
→
∞
lim
n
1
A
n
=
[
0
0
0
0
]