Let the equation of the circle be x2+y2+2gx+2fy+c=0
Since, this passes through (1,2). ∴12+22+2g(1)+2f(2)+c=0 ⇒5+2g+4f+c=0…(i)
Also, the circle x2+y2=4 intersects the circle x2+y2+2gx+2fy+c=0 orthogonally. ∴2(g⋅0+f⋅0)=c−4 ⇒c=4
On putting the value of c in Eq. (i), we get 2g+4f+9=0
Hence, the locus of centre (−g,−f) is −2x−4y+9=0
or 2x+4y−9=0