x2+y2+4x−6y−12=0
Equation of tangent at (1,−1) x−y+2(x+1)−3(y−1)−12=0 3x−4y−7=0 ∴ Equation of circle is (x2+y2+4x−6y−12)+λ(3x−4y−7)=0
It passes through (4,0) : (16+16−12)+λ(12−7)=0 ⇒20+λ(5)=0 ⇒λ=−4 ∴(x2+y2+4x−6y−12)−4(3x−4y−7)=0
or x2+y2−8x+10y+16=0
Radius = 16+25−16=5