Let P(t2,2t) be the one end of a focal chord PQ of the parabola y2=4x, the coordinate of the other end Q are (t21,t−2).[∵tt′=−1] ∴PQ=(t2−t21)2+(2t+t2)2 =(t+t1)(t−t1)2+4 PQ=(t+t1)2...(i)
Given, the chord makes a θ with positive direction of x -axis ⇒tanθ=1/t2−t2−2/t−2t=(1/t−t)−2 =(t−1/t)=2cotθ
Now from Eq. (i) PQ=(t+1/t)2 PQ=(t−1/t)2+4 =(2cotθ)2+4 =4(cot2θ+1) =4cosec2θ