Q.
If a chord of the circle x2+y2=8 makes equal intercepts of length a on the coordinate axes and the range of values of ∣a∣ is (0,k), then find [k], where []represents the greatest integer function.
∣OP∣=∣OQ∣=a ∣OM∣=12+(−1)2∣0−0−a∣ =2a
Also, ∣OM∣= radius of the circle x2+y2=8 =22
For limiting case, ⇒2a=22 ⇒a=4
(In limiting case, the chord tends to become the tangent PQ.) ⇒ The range of values of ∣a∣=(0,4) ⇒k=4 ⇒[k]=4