Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if (a+bx)-3=(1/27)+(1/3)x+..... then the ordered pair (a, b) =
Q. if
(
a
+
b
x
)
−
3
=
27
1
+
3
1
x
+
.....
then the ordered pair
(
a
,
b
)
=
1552
197
Binomial Theorem
Report Error
A
(3, -27)
16%
B
(
1
,
3
1
)
8%
C
(3, 9)
52%
D
(3, -9).
24%
Solution:
(
a
+
b
x
)
−
3
=
27
1
+
3
1
x
+
....
Now
(
a
+
b
x
)
−
3
=
a
−
3
(
1
+
a
b
x
)
−
3
=
a
3
1
(
1
−
3
a
b
x
+
2
(
−
3
)
(
−
4
)
a
2
b
2
x
2
....
)
∴
27
1
=
a
3
1
and
a
4
−
3
b
=
3
1
⇒
a
3
=
27
i.e.,
a
=
3
and
−
3
b
=
3
(
3
)
4
=
27
⇒
b
=
−
9
∴
(
a
,
b
)
=
(
3
,
−
9
)