Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If [a, b] is the range of the function (x+2/2 x2+3 x+6) for x ∈ R, then
Q. If
[
a
,
b
]
is the range of the function
2
x
2
+
3
x
+
6
x
+
2
for
x
∈
R
, then
1697
191
AP EAMCET
AP EAMCET 2020
Report Error
A
a
<
0
,
b
<
0
B
a
<
0
,
b
>
0
C
a
>
0
,
b
>
0
D
a
>
0
,
b
<
0
Solution:
[
a
,
b
]
is range of
2
x
2
+
3
x
+
6
x
+
2
and
x
∈
R
Let
y
=
2
x
2
+
3
x
+
6
x
+
2
⇒
2
y
x
2
+
3
x
y
+
6
y
=
x
+
2
⇒
2
y
x
2
+
(
3
y
−
1
)
x
+
6
y
−
2
=
0
x
∈
R
So,
D
≥
0
⇒
(
3
y
−
1
)
2
−
4
(
6
y
−
2
)
(
2
y
)
≥
0
⇒
−
39
y
2
+
10
y
+
1
≥
0
⇒
39
y
2
−
10
y
−
1
≤
0
⇒
(
3
y
−
1
)
(
13
y
+
1
)
≤
0
⇒
y
∈
[
−
13
1
,
3
1
]
So,
a
=
−
13
1
,
b
=
3
1
∴
a
<
0
,
b
>
0