Q.
If a,b∈R and satisfy a=b+a+b+a+……∞111,b=a−b+a−b+……∞111
then a2−b2 is equal to
287
101
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have a=b+a+a11⇒(a−b)=a+a11 .....(1)
Also, b=a−b+b11⇒(a−b)=b+b11 ....(2) ∴ From (1) and (2), we get a+a1=b+b1⇒(a−b)+(a1−b1)=0⇒(a−b)(1−ab1)=0
But reject a=b (Think?). ∴ab=1. So, from (1), we get (a−b)(a+b)=1⇒a2−b2=1