Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A+B+C=(π /2), then the value of sin text 2A+sin text 2B+sin text 2C is
Q. If
A
+
B
+
C
=
2
π
,
then the value of
s
in
2
A
+
s
in
2
B
+
s
in
2
C
is
1148
212
Rajasthan PET
Rajasthan PET 2005
Report Error
A
2
s
in
A
s
in
B
s
in
C
B
2
cos
A
cos
B
cos
C
C
4
s
in
A
s
in
B
s
in
C
D
4
cos
A
cos
B
cos
C
Solution:
Given,
A
+
B
+
C
=
2
π
s
in
2
A
+
s
in
2
B
+
s
in
2
C
=
(
s
in
2
A
+
s
in
2
B
)
+
s
in
2
C
=
2
sin
(
2
2
A
+
2
B
)
cos
(
2
2
A
−
2
B
)
+
sin
2
C
=
2
sin
(
A
+
B
)
cos
(
A
−
B
)
+
sin
2
C
=
2
cos
C
.
cos
(
A
−
B
)
+
2
sin
C
cos
C
[
∵
A
+
B
+
C
=
π
/2
A
+
B
=
π
/2
−
C
]
=
2
cos
C
[
cos
(
A
−
B
)
+
sin
C
]
=
2
cos
C
[
cos
(
A
−
B
)
+
cos
(
A
+
B
)
[
∵
C
=
2
π
−
(
A
+
B
)
]
=
2
cos
C
[
2
cos
A
cos
B
]
=
4
cos
A
cos
B
cos
C