Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ A+B+C=\frac{\pi }{2}, $ then the value of $ sin\text{ }2A+sin\text{ }2B+sin\text{ }2C $ is

Rajasthan PETRajasthan PET 2005

Solution:

Given, $ A+B+C=\frac{\pi }{2} $
$ sin\text{ }2A+sin\text{ }2B+sin\text{ }2C $
$ =(sin\text{ }2A+sin\text{ }2B)+sin\text{ }2C $
$ =2\sin \left( \frac{2A+2B}{2} \right)\cos \left( \frac{2A-2B}{2} \right)+\sin 2C $
$ =2\sin (A+B)\cos (A-B)+\sin 2C $
$ =2\cos C.\cos (A-B)+2\sin C\cos C $
$ \left[ \begin{align} & \because A+B+C=\pi /2 \\ & A+B=\pi /2-C \\ \end{align} \right] $
$ =2\cos C[\cos (A-B)+\sin C] $
$ =2\cos C[\cos (A-B)+\cos (A+B) $
$ \left[ \because C=\frac{\pi }{2}-(A+B) \right] $
$ =2\cos C[2\cos A\cos B] $
$ =4\cos A\cos B\cos C $