Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c, d are in G.P., then (a + b + c + d)2 is equal to
Q. If
a
,
b
,
c
,
d
are in
G
.
P
.
, then
(
a
+
b
+
c
+
d
)
2
is equal to
1448
186
KEAM
KEAM 2012
Sequences and Series
Report Error
A
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
b
+
c
)
2
B
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
a
+
c
)
2
C
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
b
+
d
)
2
D
(
a
+
b
)
2
+
(
c
+
d
)
2
+
(
b
+
c
)
2
E
(
a
+
b
)
2
+
(
c
+
d
)
2
+
(
b
−
c
)
2
Solution:
Since,
a
,
b
,
c
and
d
are in GP.
∴
b
2
=
a
c
,
c
2
=
b
d
and
a
b
=
c
d
⇒
b
c
=
a
d
...
(
i
)
Now,
(
a
+
b
+
c
+
d
)
2
=
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
a
+
b
)
(
c
+
d
)
=
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
a
c
+
a
d
+
b
c
+
b
d
)
=
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
b
2
+
b
c
+
b
c
+
c
2
)
[from Eq. (i)]
=
(
a
+
b
)
2
+
(
c
+
d
)
2
+
2
(
b
+
c
)
2