Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c, d are in G.P., then (a3+b3)-1,(b3+c3)-1,(c3+. .d3)-1 are in
Q. If
a
,
b
,
c
,
d
are in G.P., then
(
a
3
+
b
3
)
−
1
,
(
b
3
+
c
3
)
−
1
,
(
c
3
+
d
3
)
−
1
are in
2635
237
Sequences and Series
Report Error
A
A.P.
34%
B
G.P.
39%
C
H.P.
11%
D
None of these
15%
Solution:
Let
b
=
a
r
,
c
=
a
r
2
and
d
=
a
r
3
Then,
a
3
+
b
3
1
=
a
3
(
1
+
r
3
)
1
,
b
3
+
c
3
1
=
a
3
r
3
(
1
+
r
3
)
1
and,
c
3
+
d
3
1
=
a
3
r
6
(
1
+
r
3
)
1
Clearly,
(
a
3
+
b
3
)
−
1
,
(
b
3
+
c
3
)
−
1
and
(
c
3
+
d
3
)
−
1
are in
G
.
P
. with common ratio
1/
r
3
.