Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c, d$ are in G.P., then $\left(a^{3}+b^{3}\right)^{-1},\left(b^{3}+c^{3}\right)^{-1},\left(c^{3}+\right.$ $\left.d^{3}\right)^{-1}$ are in

Sequences and Series

Solution:

Let $b=a r, c=a r^{2}$ and $d=a r^{3}$
Then, $\quad \frac{1}{a^{3}+b^{3}}=\frac{1}{a^{3}\left(1+r^{3}\right)}, \frac{1}{b^{3}+c^{3}}=\frac{1}{a^{3} r^{3}\left(1+r^{3}\right)}$ and, $\frac{1}{c^{3}+d^{3}}=\frac{1}{a^{3} r^{6}\left(1+r^{3}\right)}$
Clearly, $\left(a^{3}+b^{3}\right)^{-1},\left(b^{3}+c^{3}\right)^{-1}$ and $\left(c^{3}+d^{3}\right)^{-1}$ are in $G.P$. with common ratio $1 / r^{3}$.