Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A, B, C, D are four points in space satisfying AB. CD=k[|AD|2 +|BC|2 -|AC|2-|BD|2], then the value of k is
Q. If A, B, C, D are four points in space satisfying
A
B
.
C
D
=
k
[
∣
∣
A
D
∣
∣
2
+
∣
∣
BC
∣
∣
2
−
∣
∣
A
C
∣
∣
2
−
∣
∣
B
D
∣
∣
2
]
,
then the value of k is
2695
230
Vector Algebra
Report Error
A
2
38%
B
3
1
31%
C
2
1
15%
D
1
15%
Solution:
Let
b
,
c
,
d
be the position vectors of B, C, D w.r.t.
A as origin. So,
A
B
=
b
,
C
D
=
d
−
c
,
A
D
=
d
,
BC
=
c
−
b
,
A
C
=
c
an
d
B
D
=
d
−
b
N
o
w
,
L
.
H
.
S
.
=
b
.
(
d
−
c
)
an
d
R
H
S
=
k
[
∣
∣
d
∣
∣
2
+
∣
∣
c
−
b
∣
∣
2
−
∣
c
∣
2
−
∣
∣
d
−
b
∣
∣
2
]
=
k
[
d
.
d
+
c
.
c
+
b
.
−
2
c
.
b
−
c
.
c
−
d
.
d
−
b
.
b
+
2
d
.
b
]
=
2
k
[
b
.
(
d
−
c
)
]
⇒
k
=
2
1
⋅