Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a , b , c , d are four distinct vectors satisfying the conditions a × b = c × d and a × c = b × d , then prove that a ⋅ b + c ⋅ d ≠a ⋅ c + b ⋅ d
Q. If
a
,
b
,
c
,
d
are four distinct vectors satisfying the conditions
a
×
b
=
c
×
d
and
a
×
c
=
b
×
d
, then prove that
a
â‹…
b
+
c
â‹…
d
î€
=
a
â‹…
c
+
b
â‹…
d
1535
172
IIT JEE
IIT JEE 2004
Vector Algebra
Report Error
A
B
C
D
Solution:
Given,
a
×
b
=
c
×
d
and
a
×
c
=
b
×
d
⇒
a
×
b
−
a
×
c
=
c
×
d
−
b
×
d
⇒
a
×
(
b
−
c
)
=
(
c
−
b
)
×
d
⇒
a
×
(
b
−
c
)
−
(
c
−
b
)
×
d
=
0
⇒
a
×
(
b
−
c
)
−
d
×
(
b
−
c
)
=
0
⇒
(
a
−
d
)
×
(
b
−
c
)
=
0
⇒
(
a
−
d
)
∥
(
b
−
c
)
∴
(
a
−
d
)
â‹…
(
b
−
c
)
î€
=
0
⇒
a
â‹…
b
+
d
â‹…
c
î€
=
d
â‹…
b
+
a
â‹…
c