Using a2+b2+c2=0, we can write Δ as Δ=∣∣−a2abacab−b2bcacbc−c2∣∣=abc∣∣−abca−bcab−c∣∣
[taking a,b,c common from C1,C2,C3 respectively] =a2b2c2∣∣−1111−1111−1∣∣
[taking a,b,c common from R1,R2,R3 respectively] =a2b2c2∣∣02020011−1<br/>∣∣=−2a2b2c2∣∣201−1<br/>∣∣=4a2b2c2
[applying C1→C1+C3 and C3→C2+C3 ]
Thus, k=4.