Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are the roots of the equation x3-3x2+3x+7=0, then the value of | beginmatrix2bc-a2&c2&b2 c2&2ac-b2&a2 b2&a2&2ab-c2 endmatrix| is
Q. If
a
,
b
,
c
are the roots of the equation
x
3
−
3
x
2
+
3
x
+
7
=
0
, then the value of
∣
∣
2
b
c
−
a
2
c
2
b
2
c
2
2
a
c
−
b
2
a
2
b
2
a
2
2
ab
−
c
2
∣
∣
is
3551
216
Determinants
Report Error
A
9
50%
B
27
25%
C
81
0%
D
0
25%
Solution:
x
3
−
3
x
2
+
3
x
+
7
=
0
⇒
(
x
−
1
)
3
+
8
=
0
⇒
(
x
−
1
)
3
=
(
−
2
)
3
⇒
(
−
2
x
−
1
)
3
=
1
⇒
2
x
−
1
=
(
1
)
13
=
1
,
ω
,
ω
2
⇒
x
−
1
=
−
2
,
−
2
ω
,
−
2
ω
2
⇒
x
=
−
1
,
1
−
2
ω
,
1
−
2
ω
2
⇒
a
=
−
1
,
b
=
1
−
2
ω
,
c
=
1
−
2
ω
2
Now,
Δ
=
∣
∣
2
b
c
−
a
2
c
2
b
2
c
2
2
a
c
−
b
2
a
2
b
2
a
2
2
ab
−
c
2
∣
∣
=
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
2
=
[
−
(
a
3
+
b
3
+
c
3
−
3
ab
c
)
]
2
=
{
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
)
}
2
4
1
(
a
+
b
+
c
)
2
{
(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
}
2
=
0