Multiply R1 by a, R2 by b & R3 by c& divide the determinant by abc. Now take a,b & c common from c1,c2&c3. Now use C1→C1+C2+C3 to get ] (a2+b2+c2+1)∣∣1b2c21b2+1c21b2c2+1∣∣=1.
Now use c1→c1−c2&c2→c2−c3
we get 1+a2+b2+c2=1⇒a=b=c=0⇒ (D)