Since a,b,c are in A.P. ∴b−a=c−b...(1)
Since a2,b2,c2 are in H.P. ∴b21−a21=c21−b21 ⇒a2b2a2−b2=b2c2b2−c2 ⇒a2(a−b)(a+b)=c2(b−c)(b+c) ⇒a2a+b=c2b+c [Using (1)] ⇒ac2+bc2−a2b−a2c=0 ⇒ac2−a2c+bc2−ba2=0 ⇒ac(c−a)+b(c2−a2)=0 ⇒(c−a)(ac+b(c+a))=0 ⇒(c−a)(ac+bc+ab)=0 ⇒ either c=a or ab+bc+ca=0
If c=a, from (1)b−a=a−b ⇒2a=2b ⇒a=b. Hence a=b=c [ab+bc+ca=0⇒b(a+c)=−ca ⇒b.2b=−ca⇒2b2=−ca
not possible if a,b,c are+ve]