Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c $ are in A.P. in $a^2, b^2, c^2$ are in H.P., then

Sequences and Series

Solution:

Since $a,b, c$ are in $A.P$.
$\therefore b-a = c-b \quad...\left(1\right)$
Since $a^{2}, b^{2}, c^{2} $ are in $H.P$.
$ \therefore \frac{1}{b^{2}} -\frac{1}{a^{2}} = \frac{1}{c^{2}}-\frac{1}{b^{2}} $
$\Rightarrow \frac{ a^{2}-b^{2}}{a^{2}b^{2}} =\frac{ b^{2}-c^{2}}{b^{2}c^{2}}$
$ \Rightarrow \frac{\left(a-b\right)\left(a+b\right)}{a^{2}} = \frac{\left(b-c\right)\left(b+c\right)}{c^{2}} $
$ \Rightarrow \frac{a+b}{a^{2}} = \frac{b+c}{c^{2}} \quad$ [Using $(1)$]
$ \Rightarrow ac^{2} +bc^{2}-a^{2}b-a^{2}c= 0$
$ \Rightarrow ac^{2}-a^{2}c+bc^{2}-ba^{2}=0$
$ \Rightarrow ac\left(c-a\right)+b\left(c^{2}-a^{2}\right) = 0 $
$\Rightarrow \left(c-a\right)\left(ac+b\left(c+a\right)\right) = 0$
$ \Rightarrow \left(c-a\right)\left(ac+bc+ab\right) =0$
$ \Rightarrow $ either $c=a$ or $ab+bc+ca = 0$
If $c=a$, from $\left(1\right) b-a = a-b $
$\Rightarrow 2a=2b $
$ \Rightarrow a=b$. Hence $a=b=c $
$[ab+bc+ca=0 \Rightarrow b\left(a+c\right)= -ca $
$ \Rightarrow b.2b= -ca \Rightarrow 2b^{2} = -ca$
not possible if $a, b, c$ are$ +ve]$